On certain Lagrangian subvarieties in minimal resolutions of Kleinian singularities

Mengwei Hu

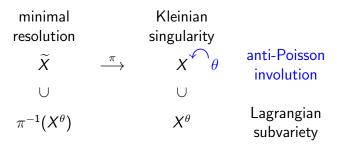
Yale University

Southeastern Lie Theory Workshop XV May 2-4, 2025

arXiv: 2504.08717

Kleinian singularities are the only normal Gorenstein singularities in dimension 2. Anti-Poisson involutions and their fixed point loci appear naturally when we want to classify irreducible Harish-Chandra modules over Kleinian singularities.

Overview:



Goal: Describe X^{θ} and $\pi^{-1}(X^{\theta})$ as schemes.

2 Anti-Poisson involutions and their fixed point loci

3 Preimage of fixed point loci under minimal resolutions

Let $\Gamma \subset SL_2(\mathbb{C})$ be a finite subgroup. The algebra of invariant functions $\mathbb{C}[u, v]^{\Gamma}$ is finitely generated.

Kleinian singularities are the quotients $X := \mathbb{C}^2/\Gamma = \operatorname{Spec} \mathbb{C}[u, v]^{\Gamma}$.

Example

When
$$\Gamma = \{\pm l_2\}$$
, we have $\mathbb{C}[u, v]^{\Gamma}$ = even degree polynomials = $\mathbb{C}[x = u^2, y = v^2, z = uv] = \mathbb{C}[x, y, z]/(xy - z^2).$

Fact (Klein, 1884)

 $\mathbb{C}^2/\Gamma \hookrightarrow \mathbb{C}^3$ (one relation), and \mathbb{C}^2/Γ has an isolated singularity at 0.

Kleinian singularities

Classification of finite subgroups of $SL_2(\mathbb{C})$:

- The cyclic group of order n + 1. $xy - z^{n+1} = 0$
- The binary dihedral group of order 4(n-2), $n \ge 4$. $x^{n-1} + xy^2 + z^2 = 0$
- The binary tetrahedral group of order 24. $x^4 + y^3 + z^2 = 0$
- The binary octahedral group of order 48. $x^{3}y + y^{3} + z^{2} = 0$
- The binary icosahedral group of order 120. $x^5 + y^3 + z^2 = 0$

McKay correspondence: Finite subgroups of $SL_2(\mathbb{C})$ are in bijection with *ADE* Dynkin diagrams.

 A_n

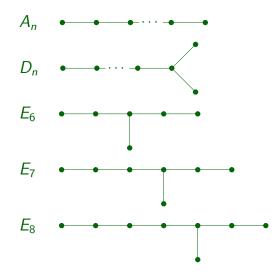
 D_n

 E_6

 E_7

 E_8

Kleinian singularities



McKay correspondence

How to attach a Dynkin diagram to a finite subgroup of $SL_2(\mathbb{C})$?

- McKay Correspondence [McKay, 1979].
- Minimal Resolution [Du Val, 1934]. By a resolution one means a smooth variety X equipped with a projective birational morphism π: X → X := C²/Γ. The minimality condition means that any other resolution factors through X. The exceptional fiber

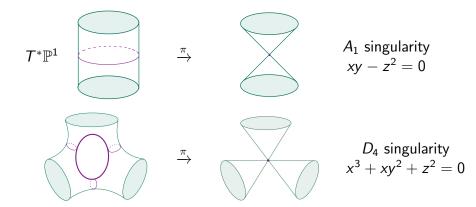
$$\pi^{-1}(0) = C_1 \cup \cdots \cup C_n, \ C_i \simeq \mathbb{P}^1$$

is a connected union of \mathbb{P}^1 's. We can construct the dual graph of $\pi^{-1}(0)$ by replacing each C_i by a vertex *i* and joining vertices *i* and *j* by an edge if C_i intersects with C_j .

Fact (Du Val, 1934)

The dual graph of $\pi^{-1}(0)$ is the corresponding type Dynkin diagram.

Example: A_1 and D_4 singularities



Anti-Poisson involutions

Set $X := \mathbb{C}^2/\Gamma$. The algebra of functions $\mathbb{C}[X] = \mathbb{C}[u, v]^{\Gamma}$ is a graded (by degree of polynomials in u, v) Poisson algebra with Poisson bracket

$$\{f_1, f_2\} = \frac{\partial f_1}{\partial u} \frac{\partial f_2}{\partial v} - \frac{\partial f_1}{\partial v} \frac{\partial f_2}{\partial u}.$$

Example

On type $A_n : \mathbb{C}[x, y, z]/(xy - z^{n+1})$ Kleinian singularity. The Poisson brackets are given by

$$\{x, y\} = (n+1)^2 z^n, \{x, z\} = (n+1)x, \{y, z\} = -(n+1)y.$$

Definition

An anti-Poisson involution of a Kleinian singularity $X := \mathbb{C}^2/\Gamma$ is a graded algebra involution $\theta : \mathbb{C}[X] \to \mathbb{C}[X]$ such that

 $\theta(\{f_1, f_2\}) = -\{\theta(f_1), \theta(f_2)\}, \ \forall \ f_1, f_2 \in \mathbb{C}[X].$

Example

On type A_n : $\mathbb{C}[x, y, z]/(xy - z^{n+1})$ Kleinian singularity,

 $x \mapsto y, \ y \mapsto x, \ z \mapsto z$

is an anti-Poisson involution.

Anti-Poisson involutions

Proposition 1 (H.)

There are finitely many anti-Poisson involutions on \mathbb{C}^2/Γ up to conjugation by graded Poisson automorphisms.

Anti-Poisson involutions for Kleinian singularities of type A_n :

	case I	case II	case III
$A_n, n \text{ odd} xy - z^{n+1} = 0$	$x \mapsto y$	$x \mapsto x$	$x\mapsto -x$
	$y\mapsto x$	$y \mapsto y$	$y\mapsto -y$
	$z\mapsto z$	$z\mapsto -z$	$z\mapsto -z$
$A_n, n \text{ even} xy - z^{n+1} = 0$	$x \mapsto y$	$x\mapsto -x$	
	$y\mapsto x$	$y \mapsto y$	
	$z\mapsto z$	$z\mapsto -z$	

 D_n , two cases; E_6 , two cases; E_7 one case; E_8 , one case.

The fixed point loci

 $X = \mathbb{C}^2/\Gamma$. Define the fixed point locus $X^{\theta} := \operatorname{Spec} \mathbb{C}[X]/I$, where $I = (\theta(f) - f, f \in \mathbb{C}[X])$.

Example (continued)

Type A_n Kleinian singularity $X = \operatorname{Spec} \mathbb{C}[x, y, z]/(xy - z^{n+1})$ with θ swapping $x \leftrightarrow y$. We have

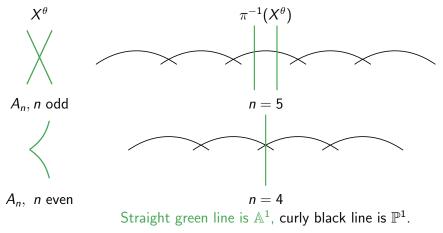
$$X^{ heta} = \operatorname{Spec} \mathbb{C}[x, y, z]/(xy - z^{n+1}, x - y) \simeq \operatorname{Spec} \mathbb{C}[x, z]/(x^2 - z^{n+1}),$$

which is a union of two \mathbb{A}^1 's when *n* is odd, a cusp when *n* is even.

Proposition 2 (H.)

- The fixed point locus X^{θ} is reduced.
- If X^θ is not a single point, each irreducible component of X^θ is either A¹ or a cusp.

Recall $\pi: \widetilde{X} \to X = \mathbb{C}^2/\Gamma$ denotes the minimal resolution. We would like to describe the preimage $\pi^{-1}(X^{\theta})$. $0 \in X^{\theta} \Rightarrow \pi^{-1}(0) \subset \pi^{-1}(X^{\theta})$. **Example:** Consider type A_n singularities with θ swapping $x \leftrightarrow y$.



Mengwei Hu (Yale)

 $\pi \colon \widetilde{X} \to X = \mathbb{C}^2/\Gamma$, minimal resolution. Want to describe $\pi^{-1}(X^{\theta})$.

- **Q1:** What are the irreducible components?
- **Q2:** How do different components intersect with each other? **Q3:** Is $\pi^{-1}(X^{\theta})$ reduced or not?

To answer these questions, we need to lift anti-Poisson involutions of X to their minimal resolutions \widetilde{X} . By a *lift* of θ , we mean an anti-symplectic involution $\widetilde{\theta} \colon \widetilde{X} \to \widetilde{X}$ such that $\pi \circ \widetilde{\theta} = \theta \circ \pi$.

$$\pi^{-1}(X^ heta)=\pi^{-1}(0)\cup\widetilde{X}^{\widetilde{ heta}}.$$

Fact: \widetilde{X} smooth $\Rightarrow \widetilde{X}^{\widetilde{\theta}}$ is smooth Lagrangian.

Theorem 3 (H.)

There exists a unique anti-symplectic involution $\tilde{\theta}$ of \tilde{X} that lifts θ .

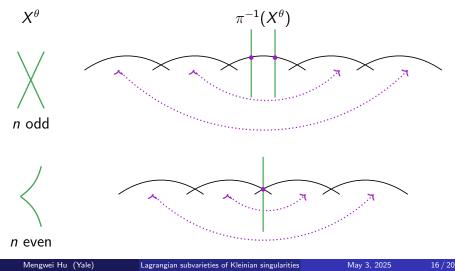
Q1: What are the irreducible components?

 \mathbb{A}^{1} 's and \mathbb{P}^{1} 's, where \mathbb{A}^{1} 's are normalizations of the irreducible components of X^{θ} , and \mathbb{P}^{1} 's are irreducible components of $\pi^{-1}(0)$.

Q2: How do different components intersect with each other?

- \mathbb{A}^1 's do not intersect with each other (as they are contained in $X^{\hat{\theta}}$).
- \mathbb{P}^1 's intersect with each other according dually to a Dynkin diagram.
- \mathbb{A}^1 intersects with a unique \mathbb{P}^1 at an isolated $\tilde{\theta}$ -fixed point of $\pi^{-1}(0)$.

Example: Consider type A_n singularities with θ swapping $x \leftrightarrow y$. The action of $\tilde{\theta}$ on $\pi^{-1}(0)$ is given by the dotted purple arrows.



Q3: Is $\pi^{-1}(X^{\theta})$ reduced? No in general. Write $\pi^{-1}(X^{\theta}) = \sum_{j=1}^{m} 1 \cdot L_j + \sum_{i=1}^{n} a_i C_i$ as a divisor, where $L_j \simeq \mathbb{A}^1$, $C_i \simeq \mathbb{P}^1$.

Set $b_i := \#$ of \mathbb{A}^1 's that a \mathbb{P}^1 intersects with.

Proposition 4 (H.)

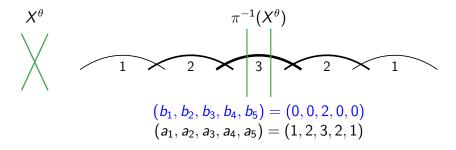
If $X^{\theta} \subset X$ is a principal divisor, then

$$(a_1,\cdots,a_n)^t=\mathcal{C}^{-1}(b_1,\cdots,b_n)^t,$$

where C is the corresponding Cartan matrix of types ADE.

Remark: In almost all cases, X^{θ} is a principal divisor on X.

Example (continuted): Type A_5 singularity with θ swapping $x \leftrightarrow y$.

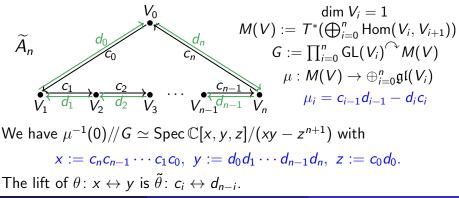


Proof of Main Theorem

Theorem 3 (H.)

There exists a unique anti-symplectic involution $\tilde{\theta}$ of \tilde{X} that lifts θ .

Idea of proof: realize Kleinian singularity as Nakajima quiver variety. **Example:** Kleinian singularity of type A_n : $xy - z^{n+1}$ as a quiver variety.



19 / 20

Thank you for your attention!