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Kleinian singularities are the only normal Gorenstein singularities in
dimension 2. Anti-Poisson involutions and their fixed point loci appear

naturally when we want to classify irreducible Harish-Chandra modules
over Kleinian singularities.
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Goal: Describe X and m1(X?) as schemes.
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© Kleinian singularities

e Anti-Poisson involutions and their fixed point loci

© Preimage of fixed point loci under minimal resolutions
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Kleinian singularities

Let ' C SLy(C) be a finite subgroup. The algebra of invariant func-
tions C[u, v]" is finitely generated.

Kleinian singularities are the quotients X := C2/I' = Spec C[u, v]".

When I' = {£h}, we have C[u, v]" = even degree polynomials =

2

Clx =v*y=v?z=uv] =C|x,y, z]/(xy — Z°).

Fact (Klein, 1884)
C?/T — C3 (one relation), and C?/T has an isolated singularity at 0.
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Kleinian singularities

Classification of finite subgroups of SL,(C):

@ The cyclic group of order n+ 1. A,
xy —z™ =0

@ The binary dihedral group of order 4(n —2), n > 4. D,
X" xy?+22=0

@ The binary tetrahedral group of order 24. Es
X**y*+22=0

@ The binary octahedral group of order 48. E;
3By +y*+22=0

@ The binary icosahedral group of order 120. Es

X +y+22=0
McKay correspondence: Finite subgroups of SL,(C) are in bijection
with ADE Dynkin diagrams.
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Kleinian singularities

Mengwei Hu (Yale) Lagrangian subvarieties of Kleinian singularities May 3, 2025



McKay correspondence

How to attach a Dynkin diagram to a finite subgroup of SL,(C)?
@ McKay Correspondence [McKay, 1979].
@ Minimal Resolution [Du Val, 1934]. By a resolution one means a
smooth variety X equipped with a projective birational morphism
7: X — X := C?/T. The minimality condition means that any
other resolution factors through X. The exceptional fiber

7 10)=GuU---UGC, C~P!

is a connected union of P*'s. We can construct the dual graph

of 771(0) by replacing each C; by a vertex i and joining vertices

i and j by an edge if C; intersects with C;.
Fact (Du Val, 1934)

The dual graph of 771(0) is the corresponding type Dynkin diagram.
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Example: A; and D, singularities
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Anti-Poisson involutions

Set X := C?/T. The algebra of functions C[X] = C[u, v]" is a graded
(by degree of polynomials in u, v) Poisson algebra with Poisson bracket

0ROk Of 0

{ﬂ’ﬁ}:%av  Ovou

Example

On type A, : C[x, y, z]/(xy — z"*!) Kleinian singularity. The Poisson
brackets are given by

{x,y} = (n+1)%z",
{x,z} = (n+1)x,
{y,z} =—(n+1)y.
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Anti-Poisson involutions

Definition

An anti-Poisson involution of a Kleinian singularity X := C2/I is a
graded algebra involution 0: C[X] — C[X] such that

0({h, h}) = —{0(h),0(%)}, ¥ h, £ € C[X].

On type A,: Clx,y, z]/(xy — z""!) Kleinian singularity,

XYy, Y= X, Z—2Z

is an anti-Poisson involution.
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Anti-Poisson involutions

Proposition 1 (H.)

There are finitely many anti-Poisson involutions on C?/T up to
conjugation by graded Poisson automorphisms.

Anti-Poisson involutions for Kleinian singularities of type A,:

case | case Il case Il
X X — X X = —X
A, n odd Y
xy — 2" — y X y=y yr— =y
ZrZz Zr —Z Zr —Z
X — X = —X
A,, neven Y
Xy—Zn+1:O y=x y—=y
Zr 2z Zr —Z

D,, two cases; Eg, two cases; E; one case; Eg, one case.

Mengwei Hu (Yale) Lagrangian subvarieties of Kleinian singularities May 3, 2025



The fixed point loci

X = C?/T. Define the fixed point locus X° := Spec C[X]/I, where
I =(0(f) = f, f e C[X]).

Example (continued)

Type A, Kleinian singularity X = SpecC[x, y, z]/(xy — z"™) with 6
swapping x <> y. We have

X0 = SpeCC[X7yaZ]/(Xy - Zn+17X - _y) = Spec(C[X,z]/(X2 - Zn+1)’

which is a union of two A''s when n is odd, a cusp when n is even.

Proposition 2 (H.)
@ The fixed point locus X? is reduced.

e If XY is not a single point, each irreducible component of X% is
either A or a cusp.
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Preimage of fixed point loci under minimal resolutions

Recall m: X — X = C?/T denotes the minimal resolution. We would
like to describe the preimage 7=1(X?). 0 € X? = 771(0) c 7~ }(X?).
Example: Consider type A, singularities with 6 swapping x <> y.

X6' 7T_1(X€)
A,, n odd n=>5
A, neven n=4

Straight green line is A, curly black line is P*.
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Preimage of fixed point loci under minimal resolutions

m: X — X = C2/T, minimal resolution. Want to describe 7 2(X?).

Q1: What are the irreducible components?
Q2: How do different components intersect with each other?
Q3: Is 77 1(X?) reduced or not?

To answer these questions, we need to lift anti-Poisson involutions of
X to their minimal resolutions . X. By a lift of 6, we mean an anti-
symplectic involution 0: X — X such that rof = fo.

X% =7 0)u X"

Fact: X smooth = X is smooth Lagrangian.

There exists a unique anti-symplectic involution 0 of X that lifts 0.
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Preimage of fixed point loci under minimal resolutions

Q1: What are the irreducible components?
Al's and P''s, where Al's are normalizations of the irreducible com-
ponents of X, and P!'s are irreducible components of 7~1(0).

Q2: How do different components intersect with each other?

e Al's do not intersect with each other (as they are contained in X).
e PU's intersect with each other according dually to a Dynkin diagram.
o Al intersects with a unique P! at an isolated f-fixed point of 71(0).
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Preimage of fixed point loci under minimal resolutions

Example: Consider type A, singularities with 6 swapping x <> .
The action of § on 7 (0) is given by the dotted purple arrows.

X9 7T_1(X0)

n odd

n even
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Preimage of fixed point loci under minimal resolutions

Q3: Is 7 1(X?) reduced?
No in general. Write 7=(X?) = 37", 1-L; + 377, a;G; as a divisor,
where L; ~ Al C; ~ P

Set b; := # of A''s that a P! intersects with.

Proposition 4 (H.)

If X® C X is a principal divisor, then
(al7 e 7an)t - Cil(blv Tty bn)t7

where C is the corresponding Cartan matrix of types ADE.

Remark: In almost all cases, X? is a principal divisor on X.
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Preimage of fixed point loci under minimal resolutions

Example (continuted): Type As singularity with 6 swapping x <> y.
X° 7 H(X?)
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Proof of Main Theorem

There exists a unique anti-symplectic involution 0 of X that lifts 0.

Idea of proof: realize Kleinian singularity as Nakajima quiver variety.
Example: Kleinian singularity of type A,: xy —z"*1 as a quiver variety.
Vo dmV; =1
M( V) = T*($7:0 Hom(\/,-, Vi+1))
G =TT, GL(V) " M(V)
o N M(V) > ©ogl(V)
\;1‘ d; \;2‘ > '\;3 V: a1 \;n pi = Ci—1di—1 — dici

A, %

We have 1 ~%(0)//G ~ SpecC[x, y, z]/(xy — z"™*) with
X = ChCh—1--"C1Cy, Y = dodl s C]’n_ld,,, zZ = Codo.

The lift of 6: x <> y is 8: ¢; <+ d_;.
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Thank you for your attention!
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