On certain Lagrangian subvarieties in minimal resolutions of Kleinian singularities

Mengwei Hu

Yale University

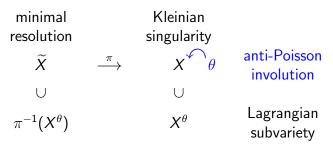
AWM Research Symposium

Geometric and topological aspects of mathematical physics and representation theory May 16-18, 2025

arXiv: 2504.08717

Mengwei Hu (Yale)

Overview:



Goal: Describe X^{θ} and $\pi^{-1}(X^{\theta})$ as schemes.

Scenario: The singularity of a subregular nilpotent element in the nilpotent cone of a simple Lie algebra is a Kleinian singularity. Interesting θ comes from Lie algebra involutions.

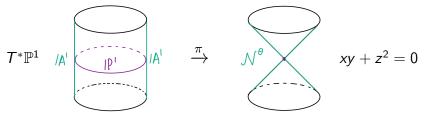
Motivation: Classify (certain) irreducible Harish-Chandra (\mathfrak{g}, K)-modules in geometric terms. Roughly speaking, Supp(HC modules) $\approx X^{\theta}$.

Example

Nilpotent cone of $\mathfrak{sl}_2(\mathbb{C})$: $\mathcal{N} = \left\{ \begin{pmatrix} z & x \\ y & -z \end{pmatrix} \middle| xy + z^2 = 0 \right\}$ Lie algebra (anti-)involution $\theta \colon M \mapsto M^t$ anti-Poisson involution

The fixed point locus
$$\mathcal{N}^{\theta} = \left\{ \begin{pmatrix} z & x \\ y & -z \end{pmatrix} \middle| xy + z^2 = 0, x = y \right\}$$
 (symmetric matrices in \mathcal{N})

Springer resolution $\pi \colon \widetilde{\mathcal{N}} = \mathcal{T}^* \mathbb{P}^1 \to \mathcal{N}$. Study preimage $\pi^{-1}(\mathcal{N}^{\theta})$.



Kleinian singularity of type A_1

2 Anti-Poisson involutions and their fixed point loci

3 Preimage of fixed point loci under minimal resolutions

Kleinian singularities

Let $\Gamma \subset \mathsf{SL}_2(\mathbb{C})$ finite subgroup. There are five conjugacy classes.

- (A_n) cyclic group of order n+1.
- (D_n) binary dihedral group of order 4(n-2). $x^{n-1} + xy^2 + z^2 = 0$
- (*E*₆) binary tetrahedral group of order 24.
- (*E*₇) binary octahedral group of order 48.
- (E_8) binary icosahedral group of order 120.

Definition

The Kleinian singularity attached to Γ is $X := \mathbb{C}^2/\Gamma = \operatorname{Spec} \mathbb{C}[u, v]^{\Gamma}$.

Example: $\Gamma = \{\pm l_2\}$, we have $\mathbb{C}[u, v]^{\Gamma}$ = even degree polynomials $= \mathbb{C}[x = u^2, y = v^2, z = uv] = \mathbb{C}[x, y, z]/(xy - z^2).$

Fact (Klein): \mathbb{C}^2/Γ can be viewed as a hypersurface in \mathbb{C}^3 with an isolated singularity at 0. **McKay correspondence:** $\{\Gamma\} \stackrel{1-1}{\longleftrightarrow} \{ADE Dynkin diagrams\}$

Mengwei Hu (Yale)

Lagrangian subvarieties of Kleinian singularities

 $xv - z^{n+1} = 0$

 $x^{4} + y^{3} + z^{2} = 0$ $x^{3}y + y^{3} + z^{2} = 0$

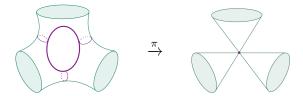
 $x^5 + v^3 + z^2 = 0$

Minimal resolutions

McKay correspondence: Kleinian singularities are in bijection with ADE Dynkin diagrams.

Minimal resolution $\pi : \widetilde{X} \to X = \mathbb{C}^2/\Gamma$, projective, birational, "minimal" **Exceptional fiber** $\pi^{-1}(0) = C_1 \cup \cdots \cup C_n$, $C_i \simeq \mathbb{P}^1$, with pairwise transversal intersection according dually to a Dynkin diagram. More precisely, replace each C_i by a vertex *i* and draw an edge between vertices *i*, *j* if C_i intersects with $C_i \rightsquigarrow$ a Dynkin diagram of types ADE.

Example: Kleinain singularity of type D_4 : $x^3 + xy^2 + z^2 = 0$



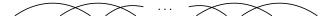
Singularity of subregular nilpotent element

Take g a simple Lie algebra of types ADE, \mathcal{N} its nilpotent cone. Take e a subregular nilpotent element and pick an \mathfrak{sl}_2 -triple $\{e, h, f\}$. Consider the Slodowy slice $S = e + \mathfrak{z}_\mathfrak{g}(f)$, then $S \cap \mathcal{N} \simeq \mathbb{C}^2/\Gamma$ is a Kleinian singularity of the corresponding type.

Ways to construct the minimal resolution:

- iterated blow-ups
- quiver varieties and GIT quotients
- base change under Springer resolution $\tilde{\mathcal{N}} \times_{\mathcal{N}} (S \cap \mathcal{N}) \to S \cap \mathcal{N}$ (exceptional fiber = Springer fiber of the subregular nilpotent element)

Example: $\mathfrak{g} = \mathfrak{sl}_{n+1}(\mathbb{C})$, Lie algebra of type A_n , Springer fiber of the subregular nilpotent element (n, 1) consists of n- \mathbb{P}^1 's.



7/19

Anti-Poisson involutions

Set $X := \mathbb{C}^2/\Gamma$. The algebra of functions $\mathbb{C}[X] = \mathbb{C}[u, v]^{\Gamma}$ is a graded (by degree of polynomials in u, v) Poisson algebra with Poisson bracket

$$\{f_1, f_2\} = \frac{\partial f_1}{\partial u} \frac{\partial f_2}{\partial v} - \frac{\partial f_1}{\partial v} \frac{\partial f_2}{\partial u}.$$

Definition

An **anti-Poisson involution** of a Kleinian singularity $X = \mathbb{C}^2/\Gamma$ is a graded algebra involution $\theta \colon \mathbb{C}[X] \to \mathbb{C}[X]$ such that

 $\theta(\{f_1, f_2\}) = -\{\theta(f_1), \theta(f_2)\}, \ \forall \ f_1, f_2 \in \mathbb{C}[X].$

Example: Type A_n Kleinian singularity $\mathbb{C}[x, y, z]/(xy - z^{n+1})$. The Poisson brackets are given by

$$\{x,y\} = (n+1)^2 z^n, \ \{x,z\} = (n+1)x, \ \{y,z\} = -(n+1)y.$$

One verifies θ : $x \mapsto y$, $y \mapsto x$, $z \mapsto z$ is an anti-Poisson involution.

The fixed point loci

Definition

 $X = \mathbb{C}^2/\Gamma$ with anti-Poisson involution θ . The **fixed point locus** is $X^{\theta} := \operatorname{Spec} \mathbb{C}[X]/I$, where $I = (\theta(f) - f, f \in \mathbb{C}[X])$.

Example: Type A_n singularity $X = \operatorname{Spec} \mathbb{C}[x, y, z]/(xy - z^{n+1})$ with θ swapping $x \leftrightarrow y$. We have

 $X^{\theta} = \operatorname{Spec} \mathbb{C}[x, y, z] / (xy - z^{n+1}, x - y) \simeq \operatorname{Spec} \mathbb{C}[x, z] / (x^2 - z^{n+1}),$

which is a union of two \mathbb{A}^{1} 's when *n* is odd, a cusp when *n* is even.

Proposition 1 (H.)

- There are finitely many anti-Poisson involutions on X = C²/Γ up to conjugation by graded Poisson automorphisms.
- The fixed point locus X^{θ} is reduced.
- Each irreducible component of X^{θ} is either \mathbb{A}^1 or a cusp.

Examples and connections

Mengwei Hu (Yale)

Exar	mple: Anti-Poisson i	nvolutions for case I	type <i>A_n</i> Kleini case II	an singularities. case III
	$A_n, n \text{ odd} xy - z^{n+1} = 0$	$x \mapsto y$	$x \mapsto x$	$x\mapsto -x$
		$y\mapsto x$	$y\mapsto y$	$y\mapsto -y$
		$z\mapsto z$	$z\mapsto -z$	$z\mapsto -z$
	$A_n, n \text{ even} \\ xy - z^{n+1} = 0$	$x \mapsto y$	$x\mapsto -x$	
		$y\mapsto x$	$y\mapsto y$	
		$z\mapsto z$	$z\mapsto -z$	

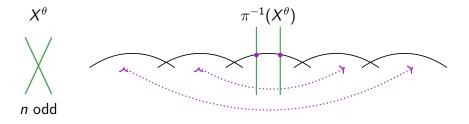
involution of $\mathfrak{sl}_{n+1} \mid M \mapsto -M^t \mid \operatorname{Ad}(I_{p,q}) \mid$

Recall S∩N is Kleinian singularity. Involution of g restricts to S∩N. Interesting anti-Poisson involutions come from Lie algebra involutions.
irreducible components of X^θ are K-orbits in the symmetric space. E.g. g = sl_{n+1}, K = SO(n + 1)[¬]{symmetric matrices in N}. Regular nilpotent elements break into two orbits when n is odd, and form a single orbit when n is even.
Remark: D_n, E₀, two cases; E₇, E₈, one case.

Lagrangian subvarieties of Kleinian singularities

Preimage of fixed point loci under minimal resolutions

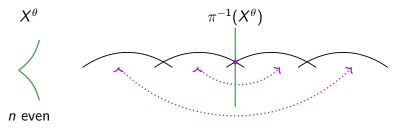
 $\pi: \widetilde{X} \to X = \mathbb{C}^2/\Gamma$ denotes the minimal resolution. We would like to describe the preimage $\pi^{-1}(X^{\theta})$. $0 \in X^{\theta} \Rightarrow \pi^{-1}(0) \subset \pi^{-1}(X^{\theta})$. **Example:** Type A_n singularity with θ swapping $x \leftrightarrow y$.



Straight green line is \mathbb{A}^1 , curly black line is \mathbb{P}^1 . **Idea:** Construct a lift of θ to \widetilde{X} , study how $\widetilde{\theta}$ acts on $\pi^{-1}(0)$. **Takeaways:** • Each irreducible component of $\pi^{-1}(X^{\theta})$ is \mathbb{A}^1 or \mathbb{P}^1 . • \mathbb{A}^1 intersects \mathbb{P}^1 at the isolated $\widetilde{\theta}$ -fixed points in $\pi^{-1}(0)$.

Preimage of fixed point loci under minimal resolutions

 $\pi: X \to X = \mathbb{C}^2/\Gamma$ denotes the minimal resolution. We would like to describe the preimage $\pi^{-1}(X^{\theta})$. $0 \in X^{\theta} \Rightarrow \pi^{-1}(0) \subset \pi^{-1}(X^{\theta})$. **Example:** Type A_n singularity with θ swapping $x \leftrightarrow y$.



Straight green line is \mathbb{A}^1 , curly black line is \mathbb{P}^1 . **Idea:** Construct a lift of θ to \widetilde{X} , study how $\widetilde{\theta}$ acts on $\pi^{-1}(0)$. **Takeaways:** • Each irreducible component of $\pi^{-1}(X^{\theta})$ is \mathbb{A}^1 or \mathbb{P}^1 . • \mathbb{A}^1 intersects \mathbb{P}^1 at the isolated $\widetilde{\theta}$ -fixed points in $\pi^{-1}(0)$.

Lift anti-Poisson involutions

 $\pi \colon \widetilde{X} \to X$, minimal resolution, and θ an anti-Poisson involution of X.

Theorem (H.)

There exists a unique anti-symplectic involution $\tilde{\theta}: \tilde{X} \to \tilde{X}$ such that $\pi \circ \tilde{\theta} = \theta \circ \pi$. It can be constructed explicitly via quiver varieties.

Fact: \widetilde{X} smooth $\Rightarrow \widetilde{X}^{\widetilde{\theta}}$ is smooth Lagrangian (no intersection, no cusp). With the lift $\widetilde{\theta}$, one can describe $\pi^{-1}(X^{\theta})_{red} = \pi^{-1}(0)_{red} \cup \widetilde{X}^{\widetilde{\theta}}$.

To determine $\pi^{-1}(X^{\theta})$, need further analysis. Set m := # of irreducible components of X^{θ} .

Method: Write $\pi^{-1}(X^{\theta}) = \sum_{j=1}^{m} 1 \cdot L_j + \sum_{i=1}^{n} a_i C_i$ as a divisor, with $L_j \simeq \mathbb{A}^1$, $C_i \simeq \mathbb{P}^1$. **Fact:** $\pi^{-1}(X^{\theta})$ is reduced $\Leftrightarrow a_i = 1$.

Define $b_i := \#$ of \mathbb{A}^1 's that a \mathbb{P}^1 intersects with.

Multiplicities

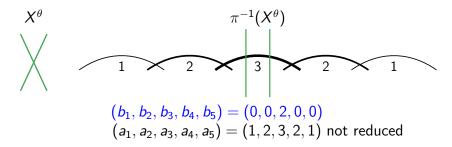
Proposition 2 (H.)

If $X^{\theta} \subset X$ is a principal divisor, then

$$(a_1,\cdots,a_n)^t=\mathcal{C}^{-1}(b_1,\cdots,b_n)^t,$$

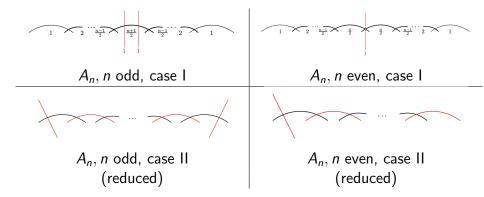
where $\ensuremath{\mathcal{C}}$ is the corresponding Cartan matrix of types ADE.

Example: Type A_5 singularity with θ swapping $x \leftrightarrow y$.



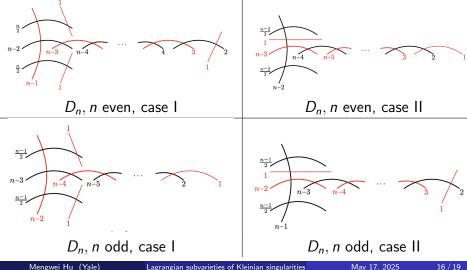
Preimages in type A

Straight line is \mathbb{A}^1 . Curly line is \mathbb{P}^1 . The number next to each component is its multiplicity. The $\tilde{\theta}$ -fixed components are colored in red.



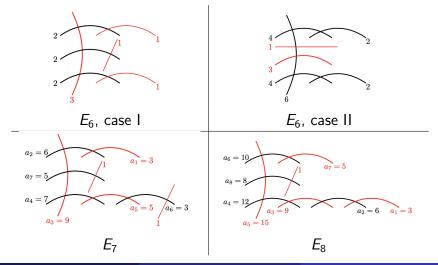
Preimages in type D

Straight line is \mathbb{A}^1 . Curly line is \mathbb{P}^1 . The number next to each component is its multiplicity. The $\tilde{\theta}$ -fixed components are colored in red.



Preimages in type E

Straight line is \mathbb{A}^1 . Curly line is \mathbb{P}^1 . The number next to each component is its multiplicity. The $\tilde{\theta}$ -fixed components are colored in red.

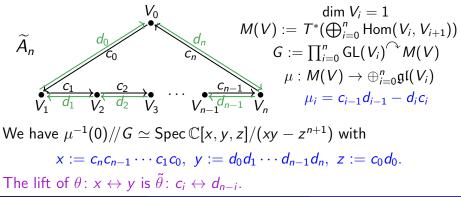


Proof of Main Theorem

Theorem (H.)

There exists a unique anti-symplectic involution $\tilde{\theta}$ of X that lifts θ .

Idea of proof: realize Kleinian singularity as Nakajima quiver variety. **Example:** Kleinian singularity of type A_n : $xy - z^{n+1}$ as a quiver variety.



18 / 19

Thank you!