

Kleinian singularities

Kleinian singularities are the only symplectic singularities in dim 2.

- $X := \mathbb{C}^2 / \Gamma = \operatorname{Spec} \mathbb{C}[u, v]^{\Gamma}, \ \Gamma \subset \operatorname{SL}_2(\mathbb{C})$ finite subgroup. • $\mathbb{C}^2/\Gamma \hookrightarrow \mathbb{C}^3$ (one relation) with the only singularity at 0.
- $(A_n) \mathbb{Z}/(n+1)\mathbb{Z} \rightsquigarrow x = u^{n+1}, \ y = v^{n+1}, \ z = uv \rightsquigarrow xy z^{n+1} = 0.$ $(D_n) x^{n-1} + xy^2 + z^2 = 0, \ n \ge 4.$ $(E_6)\ldots(E_7)\ldots(E_8)\ldots$
- McKay correspondence: $\{\Gamma\} \xleftarrow{1-1} \{ADE Dynkin diagrams\}.$ • Minimal resolution $\pi \colon \tilde{X} \to X = \mathbb{C}^2 / \Gamma$.
- Exceptional fiber $\pi^{-1}(0) = C_1 \cup \cdots \cup C_n$, $C_i \simeq \mathbb{P}^1$, pairwise transversal intersection according to a Dynkin diagram of types ADE.

On certain Lagrangian subvarieties in minimal resolutions of Kleinian singularities

Mengwei Hu (Yale) 🗹 m.hu@yale.edu

Anti-Poisson involutions & fixed point loci

Set $X = \mathbb{C}^2 / \Gamma$. The algebra of functions $\mathbb{C}[X] = \mathbb{C}[u, v]^{\Gamma}$ is a graded (by degree of polynomials in u, v) Poisson algebra with Poisson bracket $\{f_1, f_2\} = rac{\partial f_1}{\partial u} rac{\partial f_2}{\partial v} - rac{\partial f_1}{\partial v} rac{\partial f_2}{\partial u}.$

Definition: An anti-Poisson involution of $X = \mathbb{C}^2/\Gamma$ is a graded algebra involution $\theta \colon \mathbb{C}[X] \to \mathbb{C}[X]$ such that $\theta(\{f_1, f_2\}) = -\{\theta(f_1), \theta(f_2)\}, \ \forall \ f_1, f_2 \in \mathbb{C}[X].$ **Definition:** The **fixed point locus** is $X^{\theta} := \operatorname{Spec} \mathbb{C}[X]/I$, where $I = (\theta(f) - f, \ f \in \mathbb{C}[X]).$

Proposition 1 (H., 2025)

• There are finitely many anti-Poisson involutions on \mathbb{C}^2/Γ up to conjugation by graded Poisson automorphisms. • The fixed point locus X^{θ} is reduced. • Each irreducible component of X^{θ} is either \mathbb{A}^1 or a cusp.

Main Theorem

Theorem (H., 2025)

There exists a unique anti-symplectic involution $\tilde{\theta} : \tilde{X} \to \tilde{X}$ such that $\pi \circ \tilde{\theta} = \theta \circ \pi$.

Sketch of Proof: Type $A_n : xy - z^{n+1}$ singularity as a quiver variety.

dim $V_i = 1$. Moment map $\mu_i = c_{i-1}d_{i-1}$ $x = c_n c_{n-1} \cdots c_1 c_0, \ y = d_0 d_1 \cdot$

The lift of $\theta \colon x \leftrightarrow y$ is $\tilde{\theta} \colon c_i \leftrightarrow d_{n-i}$. **Remark:** Types DE similar, but harder to pick out the generators

x, y, z as trace functions because dim $V_i \neq 1$.

 A_1 singularity D_4 singularity

 $x^3 + xy^2 + z^2 = 0$

$$\begin{array}{c}
 d_n \\
 c_n \\
 \vdots \\
 \vdots \\
 V_{n-1} \\
 d_{n-1} \\
 V_n \\
 - d_i c_i = 0. \\
 \cdots \\
 d_{n-1} \\
 d_n, \\
 z = c_0 \\
 d_0.
\end{array}$$

Takeaways:

Scheme structure: Write $\pi^{-1}(X^{\theta}) = \sum_{j=1}^{m} L_j + \sum_{i=1}^{n} a_i C_i$ as a divisor, where $L_j \simeq \mathbb{A}^1$, $C_i \simeq \mathbb{P}^1$. Set $b_i := \#$ of \mathbb{A}^1 's that a \mathbb{P}^1 intersects with.

Proposition 2 (H., 2025)

```
If X^{\theta} \subset X is a principal divisor, then
```


Preimages

• \tilde{X} smooth $\Rightarrow \tilde{X}^{\tilde{\theta}}$ is smooth Lagrangian. $\pi^{-1}(X^{\theta}) = \tilde{X}^{\tilde{\theta}} \cup \pi^{-1}(0)$. • Each irreducible component of $\pi^{-1}(X^{\theta})$ is \mathbb{A}^1 or \mathbb{P}^1 . • \mathbb{A}^1 intersects a unique \mathbb{P}^1 at an isolated $\tilde{\theta}$ -fixed point of $\pi^{-1}(0)$.

 $(a_1, \cdots, a_n)^t = \mathcal{C}^{-1}(b_1, \cdots, b_n)^t,$ where \mathcal{C} is the corresponding Cartan matrix of types ADE.

Example

 $\pi^{-1}(X^{\theta})$ is not reduced. Non-reduced components in thicker lines.