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Overview: Kleinian singularity X~ 6, anti-Poisson involution

universal universal
resolution deformation
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X satisfies Xy = X, gr C[X)\] = C[X], and universal property.
The restriction 7|y, : V5 — &) is a resolution of singularity.

Assume compatibility of A and 6.
Goal: Describe XY and 77 1(XY) as schemes.

Motivation: Classify Harish-Chandra modules over quantizations of
nilpotent orbits. Supp(HC modules) ~ X?. Filtered quantizations and
Poisson deformations are both parameterized by h/W. Use geometric

info from Poisson deformation to study filtered quantizations.
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An Example

Type A; Kleinian singularity: X = SpecC|[x, y, z]/(xy — 2?)
Anti-Poisson involution 0 : x <+ y

T*[F)l

X is union of two Al's; 771(X?) is the union of two A! and a PL.

Poisson deformation, X\ = Spec Clx, y, z]/(xy — 2% — )\)mé’
X! = SpecC|x,y, z]/(x? — 22 = X\) = C* if A # 0.
Note that X, is smooth, so , is iso, we get T 1(XY) ~ X? ~ C*.
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An Example
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An Example
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An Example
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Kleinian singularities

Let I' C SL»(C) be a finite subgroup. The algebra of invariant func-
tions C[u, v]" is finitely generated.

Kleinian singularities are the quotients X := C?/I' = Spec C[u, v]".

When ' = {+h}, we have C[u, v]" = even degree polynomials =

2

Clx = v?y = v z=uv] =C|x,y, z]/(xy — Z°).

Fact (Klein, 1884)

C?/T — C3 (one relation), and C?/T has an isolated singularity at 0.
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Kleinian singularities

Classification of finite subgroups [ C SL,(C)
Deformations of Kleinian singularities
(A,) cyclic group of order (n+1) ~» xy —z™! =0
xy —zMt =S Nz =0
(D,) binary dihedral group of order 4(n —2) ~» x" !+ xy? + 22 =0
x4 27;02 ANixt Ay +xy2+22=0
(Es) binary tetrahedral group of order 24 ~~ x* + y® + 22 = 0.
x* 4+ y3 + 22+ lower order terms...
(E;) binary octahedral group of order 48 ~ x3y + y* + 22 =0
x3y + y3 4+ 2?4 lower order terms...
(Eg) binary icosahedral group of order 120 ~ x3y + y* + 22 =0
x5 + y3 + 22+ lower order terms...

McKay correspondence: Finite subgroups of SL,(C) are in bijection
with ADE Dynkin diagrams.
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Minimal resolutions

McKay correspondence: Kleinian singularities are in bijection with
ADE Dynkin diagrams.

m: Y — X, minimal resolution.
771(0) = union of P!'s, according dually to ADE Dynkin diagram.

Examples:

T+pl ‘ LN A; smgglanty
~ xy —zc=0

l‘ ™ D, singularity

\"' o Pt 42 0
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Deformations of Kleinian singularities

What are the singularities of Xy, A € h/W?
What is the exceptional fiber of 7: Y5 — Xy, A € h?

Proposition (Slodowy)

Let p € X, be a singular point. Let A(A) = A;U---UA,, be the
decomposition of the Dynkin diagram of the reductive group ZG(S\)
into connected components. Then the completion of X, at p is a

Kleinian singularity of type A; for a suitable i € {1,--- ,m}. The

exceptional fiber 771(p) is a union of P!'s according dually to A;.

o

Example: The surface (xy — (z —1)?(z+2) = 0) is a deformation of
type A, singularity (xy — 23 = 0).

The completion of (xy — (z — 1)?(z + 2) = 0) at its unique singular
point p = (0,0, 1) is a type A; Kleinian singularity.

Key observation: z + 2 is invertible around p = (0,0, 1). We can take

H X y o o 2
its square root, thus get —Z=—2= (z—1)*=0.
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Poisson structures

Set X = C?/I'. The algebra of functions C[X] = C[u, v]" is a graded
(by degree of polynomials in u, v) Poisson algebra with Poisson bracket

0f 0, Of; 0f
{h,h} = vy dvou

Example: Type A, Kleinian singularity C[x, y, z]/(xy — z"™*). The
Poisson brackets (up to rescaling) are given by

{Xay} = (n+ 1)2", {X,Z} = X, {y’z} ———

On the deformation Clx, y, z]/(xy — P(z)), the Poisson brackets are
given by

{X7y} = 'D/(Z), {X,Z} =X, {y7z} ——
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Anti-Poisson involutions

Definition. An anti-Poisson involution of a Kleinian singularity X =
C?/T is a graded algebra involution 6: C[X] — C[X] such that

0({h, k}) = —{0(h),0(R)}, ¥ A, £ € CX].

Proposition (H., 2025)

There are finitely many 6 on C?/T up to conjugation. They can all
be written out explicitly.

Definition. We say that 6 acts on X), if there exists a filtered involu-
tion 6, : C[X)\] — C[X,] s.t. grd, = 6. We may simply write 0, by ¢
if no confusion is caused.

Proposition (H. in progress)

Fix X and 6. Then 6 acts on the deformation space h/W. Moreover,
6 acts on X if and only if A\ € (h/W)".
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Fixed Point Locus

Example. Consider type A, Kleinian singularity xy — z™1 = 0.

(1) The anti-Poisson involution #: x <+ y acts on any deformation
xy —(z—=Xo)(z— A1) (z—=Ap) =0.

(2) The anti-Poisson involution 6: z — —z acts on the deformation
xy —(z—=Xo)(z—A1)---(z—=A,) =0if and only if \; = —\,_;.

Definition. Assume @ acts on X). The fixed point locus is XY :=
Spec C[X,]/1, where | = (6(f) — f, f € C[X})]).

Example: Type A, singularity X = SpecC|x, y, z]/(xy — z"1) with
0: x <» y. The fixed-point locus

X% = SpecC|x, y, z]/(xy — 2", x — y) =~ SpecC|x, z]/(x* — z"T1),
which is a union of two A''s when n is odd, a cusp when n is even.

XY can be computed similarly, but description is more complicated. In
general, irreducible component is non-smooth affine curves.

E.g. The fixed point locus of xy —(z—1)?(z+2) = 0 under §: x <> y
is x> — (z —1)*(z + 2) = 0, a nodal cubic.
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Lift anti-Poisson involutions

Fix 0. Recall m: Y5 — X\ minimal resolution. Want to study 7—*(X?).

Theorem (H., 2025 — All types ADE)

For Xo = X and m: Y — X, there exists a unique anti-symplectic
involution 0 : Y — Y such that. mof =6 om.

Idea of Proof: quiver varieties and involutions.

Conjecture (Theorem in type A — H., in progress)

Fix A\ € h/W. For suitable choice of X € b, there exists a unique
anti-symplectic involution 6 : Y5 — Y5 such that mo 8 = 6 o 7.

Main difficulty: There are multiple choice of X\. Though 8 fixes \,
it may permute different \'s. (In the Theorem, A = 0 = \ = 0)
Currently working towards type D.
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Preimages

Why the lift is useful?

Fact: )5 = y§ smooth = No intersection, no cusp/nodal.
We have 7 1(XY!) = y§ U Uim1(p;), where p;'s are the singular points
of XY (The singular points of X that are fixed by 6).

L ¢ &Y be an irreducible component. Then its normalization [ C yg.

Irreducible components of 7=1(X?) are projective lines and smooth
affine curves.

How to determine the preimage 7 (X{)?

e Draw the exceptional fibers 7=(p;): union of P*'s.

e Analyze the action of # on each 7~ 1(p;).

e Attach the smooth affine curve [ to isolated points in 7 *(p;)’.
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Deformations of Type A, Kleinian singularities, with 6: x <> y.
Xy = SpecClx,y, 2]/ (xy — [IiLo(z = A1), 32; A =0.
1. X=0

x: %eca[)(-j\ij/(xjv ZM\J ) ‘t‘\L”)—c Ay .6 Xc—;j
X LNy

IA\ A1

(k'

A" (nowodiafion of wsy)
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Thank you!
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