

Geometry of anti-Poisson involution in the deformations and resolutions of Kleinian singularities

Mengwei Hu

Yale University

AMS 2025 Fall Central Sectional Special Session
Geometry, Representation Theory and Noncommutative Algebra
Oct 18-19, 2025

- 1 Motivation
- 2 Kleinian singularities and their deformations
- 3 Anti-Poisson involutions and fixed point loci
- 4 Preimages under resolutions

Overview: Kleinian singularity X^θ , anti-Poisson involution

$$\begin{array}{ccccc} & \text{universal} & & \text{universal} & \\ & \text{resolution} & & \text{deformation} & \\ \pi^{-1}(\mathcal{X}_\lambda^\theta) \subset \mathcal{Y}_{\tilde{\lambda}} \subset \mathcal{Y} & \xrightarrow{\pi} & \mathcal{X} & \supset \mathcal{X}_\lambda & \supset \mathcal{X}_\lambda^\theta \\ & \downarrow & & \downarrow & \\ \tilde{\lambda} \in \mathfrak{h} & \longrightarrow & \mathfrak{h}/W & \ni & \lambda \end{array}$$

\mathcal{X} satisfies $\mathcal{X}_0 = X$, $\text{gr } \mathbb{C}[\mathcal{X}_\lambda] = \mathbb{C}[X]$, and universal property. The restriction $\pi|_{\mathcal{Y}_{\tilde{\lambda}}}: \mathcal{Y}_{\tilde{\lambda}} \rightarrow \mathcal{X}_\lambda$ is a resolution of singularity.

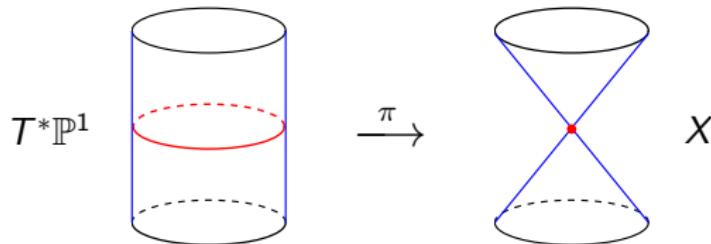
Assume compatibility of λ and θ .

Goal: Describe $\mathcal{X}_\lambda^\theta$ and $\pi^{-1}(\mathcal{X}_\lambda^\theta)$ as schemes.

Motivation: Classify Harish-Chandra modules over quantizations of nilpotent orbits. $\text{Supp}(\text{HC modules}) \approx X^\theta$. Filtered quantizations and Poisson deformations are both parameterized by \mathfrak{h}/W . Use geometric info from Poisson deformation to study filtered quantizations.

An Example

Type A_1 Kleinian singularity: $X = \text{Spec } \mathbb{C}[x, y, z]/(xy - z^2)$
Anti-Poisson involution $\theta : x \leftrightarrow y$



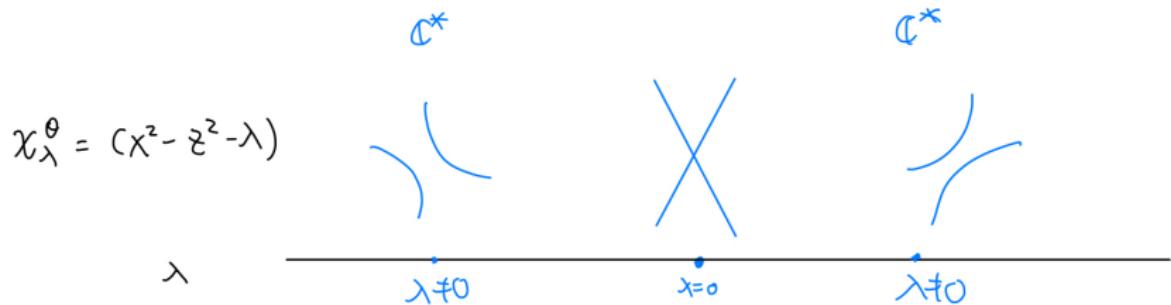
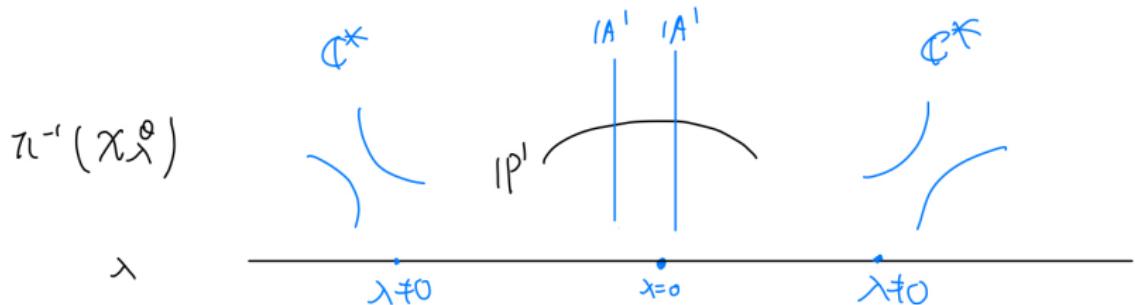
X^θ is union of two \mathbb{A}^1 's; $\pi^{-1}(X^\theta)$ is the union of two \mathbb{A}^1 and a \mathbb{P}^1 .

Poisson deformation, $\mathcal{X}_\lambda = \text{Spec } \mathbb{C}[x, y, z]/(xy - z^2 - \lambda)$ $\curvearrowleft \theta$

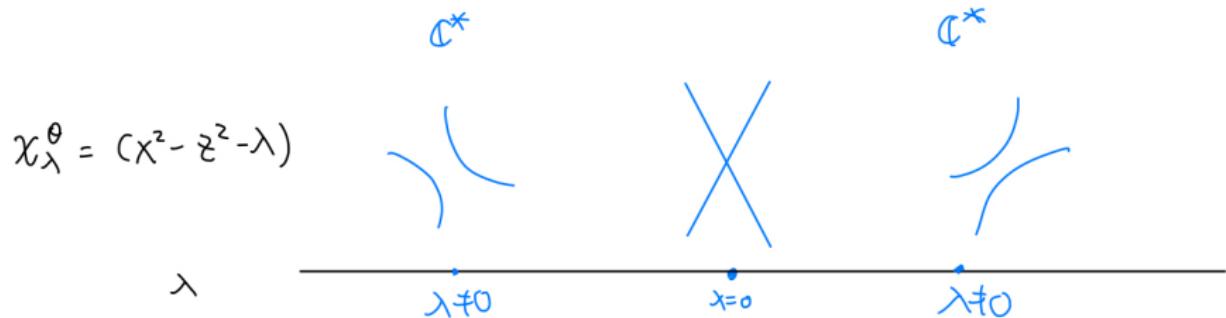
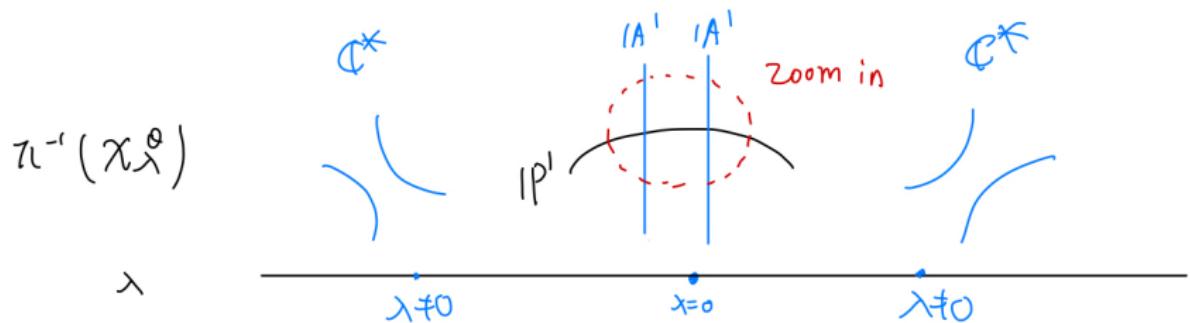
$\mathcal{X}_\lambda^\theta = \text{Spec } \mathbb{C}[x, y, z]/(x^2 - z^2 - \lambda) \simeq \mathbb{C}^*$ if $\lambda \neq 0$.

Note that \mathcal{X}_λ is smooth, so π_λ is iso, we get $\pi^{-1}(\mathcal{X}_\lambda^\theta) \simeq \mathcal{X}_\lambda^\theta \simeq \mathbb{C}^*$.

An Example



An Example

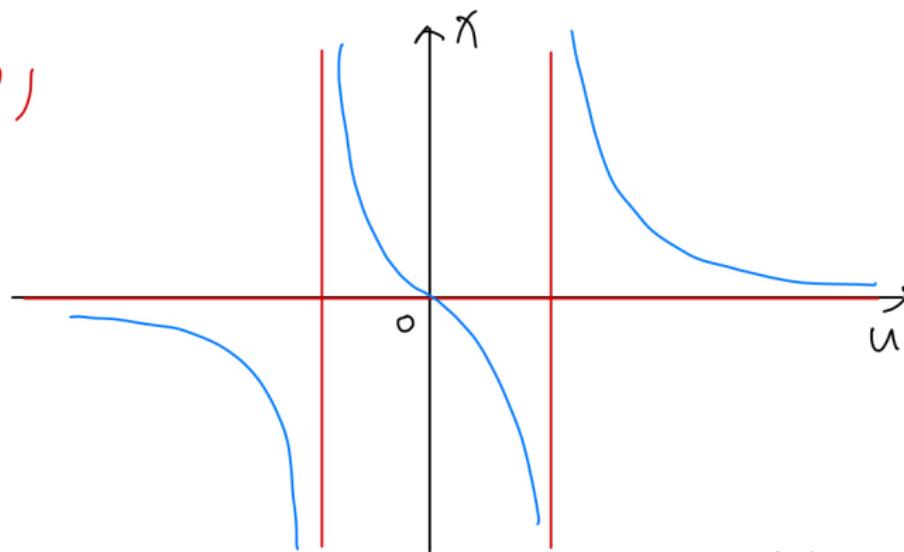


An Example

$$\pi^{-1}(x_\lambda^\theta)$$

$$\lambda = 0$$

$$\lambda \neq 0$$



$$\chi(u^2-1) = 2\lambda u \Rightarrow x = \frac{2\lambda u}{u^2-1}$$

$$z = xu - \lambda$$

Kleinian singularities

Let $\Gamma \subset \mathrm{SL}_2(\mathbb{C})$ be a finite subgroup. The algebra of invariant functions $\mathbb{C}[u, v]^\Gamma$ is finitely generated.

Kleinian singularities are the quotients $X := \mathbb{C}^2/\Gamma = \mathrm{Spec} \mathbb{C}[u, v]^\Gamma$.

Example

When $\Gamma = \{\pm I_2\}$, we have $\mathbb{C}[u, v]^\Gamma = \text{even degree polynomials} = \mathbb{C}[x = u^2, y = v^2, z = uv] = \mathbb{C}[x, y, z]/(xy - z^2)$.

Fact (Klein, 1884)

$\mathbb{C}^2/\Gamma \hookrightarrow \mathbb{C}^3$ (one relation), and \mathbb{C}^2/Γ has an isolated singularity at 0.

Kleinian singularities

Classification of finite subgroups $\Gamma \subset \mathrm{SL}_2(\mathbb{C})$

Deformations of Kleinian singularities

(A_n) cyclic group of order $(n+1) \rightsquigarrow xy - z^{n+1} = 0$
 $xy - z^{n+1} - \sum_{i=0}^{n-1} \lambda_i z^i = 0$

(D_n) binary dihedral group of order $4(n-2) \rightsquigarrow x^{n-1} + xy^2 + z^2 = 0$
 $x^{n-1} + \sum_{i=0}^{n-2} \lambda_i x^i + \lambda_n y + xy^2 + z^2 = 0$

(E_6) binary tetrahedral group of order 24 $\rightsquigarrow x^4 + y^3 + z^2 = 0.$
 $x^4 + y^3 + z^2 + \text{lower order terms...}$

(E_7) binary octahedral group of order 48 $\rightsquigarrow x^3y + y^3 + z^2 = 0$
 $x^3y + y^3 + z^2 + \text{lower order terms...}$

(E_8) binary icosahedral group of order 120 $\rightsquigarrow x^3y + y^3 + z^2 = 0$
 $x^5 + y^3 + z^2 + \text{lower order terms...}$

McKay correspondence: Finite subgroups of $\mathrm{SL}_2(\mathbb{C})$ are in bijection with ADE Dynkin diagrams.

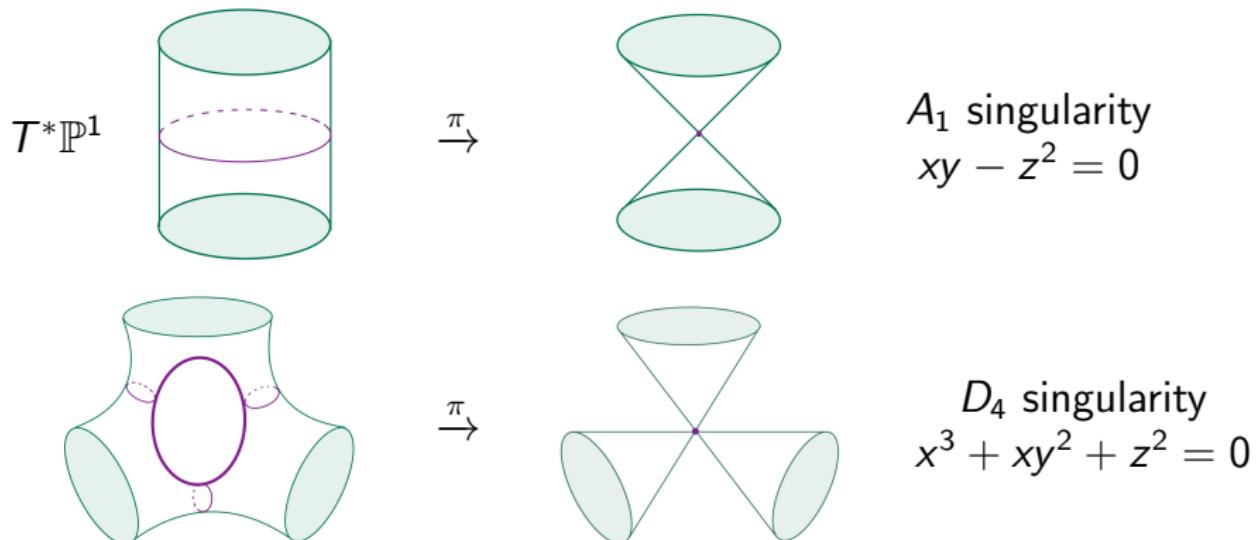
Minimal resolutions

McKay correspondence: Kleinian singularities are in bijection with ADE Dynkin diagrams.

$\pi: Y \rightarrow X$, minimal resolution.

$\pi^{-1}(0) = \text{union of } \mathbb{P}^1\text{'s, according dually to ADE Dynkin diagram.}$

Examples:



Deformations of Kleinian singularities

What are the singularities of \mathcal{X}_λ , $\lambda \in \mathfrak{h}/W$?

What is the exceptional fiber of $\pi: \mathcal{Y}_{\tilde{\lambda}} \rightarrow \mathcal{X}_\lambda$, $\tilde{\lambda} \in \mathfrak{h}$?

Proposition (Slodowy)

Let $p \in \mathcal{X}_\lambda$ be a singular point. Let $\Delta(\tilde{\lambda}) = \Delta_1 \cup \dots \cup \Delta_m$ be the decomposition of the Dynkin diagram of the reductive group $Z_G(\tilde{\lambda})$ into connected components. Then the completion of \mathcal{X}_λ at p is a Kleinian singularity of type Δ ; for a suitable $i \in \{1, \dots, m\}$. The exceptional fiber $\pi^{-1}(p)$ is a union of \mathbb{P}^1 's according dually to Δ_i .

Example: The surface $(xy - (z-1)^2(z+2) = 0)$ is a deformation of type A_2 singularity $(xy - z^3 = 0)$.

The completion of $(xy - (z-1)^2(z+2) = 0)$ at its unique singular point $p = (0, 0, 1)$ is a type A_1 Kleinian singularity.

Key observation: $z+2$ is invertible around $p = (0, 0, 1)$. We can take its square root, thus get $\frac{x}{\sqrt{z+2}} \frac{y}{\sqrt{z+2}} - (z-1)^2 = 0$.

Poisson structures

Set $X = \mathbb{C}^2/\Gamma$. The algebra of functions $\mathbb{C}[X] = \mathbb{C}[u, v]^\Gamma$ is a graded (by degree of polynomials in u, v) Poisson algebra with Poisson bracket

$$\{f_1, f_2\} = \frac{\partial f_1}{\partial u} \frac{\partial f_2}{\partial v} - \frac{\partial f_1}{\partial v} \frac{\partial f_2}{\partial u}.$$

Example: Type A_n Kleinian singularity $\mathbb{C}[x, y, z]/(xy - z^{n+1})$. The Poisson brackets (up to rescaling) are given by

$$\{x, y\} = (n+1)z^n, \quad \{x, z\} = x, \quad \{y, z\} = -y.$$

On the deformation $\mathbb{C}[x, y, z]/(xy - P(z))$, the Poisson brackets are given by

$$\{x, y\} = P'(z), \quad \{x, z\} = x, \quad \{y, z\} = -y.$$

Anti-Poisson involutions

Definition. An *anti-Poisson involution* of a Kleinian singularity $X = \mathbb{C}^2/\Gamma$ is a graded algebra involution $\theta: \mathbb{C}[X] \rightarrow \mathbb{C}[X]$ such that

$$\theta(\{f_1, f_2\}) = -\{\theta(f_1), \theta(f_2)\}, \quad \forall f_1, f_2 \in \mathbb{C}[X].$$

Proposition (H., 2025)

There are finitely many θ on \mathbb{C}^2/Γ up to conjugation. They can all be written out explicitly.

Definition. We say that θ acts on \mathcal{X}_λ if there exists a filtered involution $\theta_\lambda: \mathbb{C}[\mathcal{X}_\lambda] \rightarrow \mathbb{C}[\mathcal{X}_\lambda]$ s.t. $\text{gr } \theta_\lambda = \theta$. We may simply write θ_λ by θ if no confusion is caused.

Proposition (H. in progress)

Fix X and θ . Then θ acts on the deformation space \mathfrak{h}/W . Moreover, θ acts on \mathcal{X}_λ if and only if $\lambda \in (\mathfrak{h}/W)^\theta$.

Fixed Point Locus

Example. Consider type A_n Kleinian singularity $xy - z^{n+1} = 0$.

(1) The anti-Poisson involution $\theta: x \leftrightarrow y$ acts on any deformation

$$xy - (z - \lambda_0)(z - \lambda_1) \cdots (z - \lambda_n) = 0.$$

(2) The anti-Poisson involution $\theta: z \mapsto -z$ acts on the deformation

$$xy - (z - \lambda_0)(z - \lambda_1) \cdots (z - \lambda_n) = 0 \text{ if and only if } \lambda_i = -\lambda_{n-i}.$$

Definition. Assume θ acts on \mathcal{X}_λ . The *fixed point locus* is $\mathcal{X}_\lambda^\theta := \text{Spec } \mathbb{C}[\mathcal{X}_\lambda]/I$, where $I = (\theta(f) - f, f \in \mathbb{C}[\mathcal{X}_\lambda])$.

Example: Type A_n singularity $X = \text{Spec } \mathbb{C}[x, y, z]/(xy - z^{n+1})$ with $\theta: x \leftrightarrow y$. The fixed-point locus

$$X^\theta = \text{Spec } \mathbb{C}[x, y, z]/(xy - z^{n+1}, x - y) \simeq \text{Spec } \mathbb{C}[x, z]/(x^2 - z^{n+1}),$$

which is a union of two \mathbb{A}^1 's when n is odd, a cusp when n is even.

$\mathcal{X}_\lambda^\theta$ can be computed similarly, but description is more complicated. In general, irreducible component is non-smooth affine curves.

E.g. The fixed point locus of $xy - (z - 1)^2(z + 2) = 0$ under $\theta: x \leftrightarrow y$ is $x^2 - (z - 1)^2(z + 2) = 0$, a nodal cubic.

Lift anti-Poisson involutions

Fix θ . Recall $\pi: \mathcal{Y}_{\tilde{\lambda}} \rightarrow \mathcal{X}_{\lambda}$ minimal resolution. Want to study $\pi^{-1}(\mathcal{X}_{\lambda}^{\theta})$.

Theorem (H., 2025 – All types ADE)

For $\mathcal{X}_0 = X$ and $\pi: Y \rightarrow X$, there exists a unique anti-symplectic involution $\tilde{\theta}: Y \rightarrow Y$ such that. $\pi \circ \tilde{\theta} = \theta \circ \pi$.

Idea of Proof: quiver varieties and involutions.

Conjecture (Theorem in type A – H., in progress)

Fix $\lambda \in \mathfrak{h}/W$. For suitable choice of $\tilde{\lambda} \in \mathfrak{h}$, there exists a unique anti-symplectic involution $\tilde{\theta}: \mathcal{Y}_{\tilde{\lambda}} \rightarrow \mathcal{Y}_{\tilde{\lambda}}$ such that $\pi \circ \tilde{\theta} = \theta \circ \pi$.

Main difficulty: There are multiple choice of $\tilde{\lambda}$. Though θ fixes λ , it may permute different $\tilde{\lambda}$'s. (In the Theorem, $\lambda = 0 \Rightarrow \tilde{\lambda} = 0$)
Currently working towards type D.

Preimages

Why the lift is useful?

Fact: $\mathcal{Y}_{\tilde{\lambda}} \Rightarrow \mathcal{Y}_{\tilde{\lambda}}^{\tilde{\theta}}$ smooth \Rightarrow No intersection, no cusp/nodal.

We have $\pi^{-1}(\mathcal{X}_{\lambda}^{\theta}) = \mathcal{Y}_{\tilde{\lambda}}^{\tilde{\theta}} \cup \cup_i \pi^{-1}(p_i)$, where p_i 's are the singular points of $\mathcal{X}_{\lambda}^{\theta}$ (The singular points of \mathcal{X}_{λ} that are fixed by θ).

$L \subset \mathcal{X}_{\lambda}^{\theta}$ be an irreducible component. Then its normalization $\tilde{L} \subset \mathcal{Y}_{\tilde{\lambda}}^{\tilde{\theta}}$.

Irreducible components of $\pi^{-1}(\mathcal{X}_{\lambda}^{\theta})$ are projective lines and smooth affine curves.

How to determine the preimage $\pi^{-1}(\mathcal{X}_{\lambda}^{\theta})$?

- Draw the exceptional fibers $\pi^{-1}(p_i)$: union of \mathbb{P}^1 's.
- Analyze the action of $\tilde{\theta}$ on each $\pi^{-1}(p_i)$.
- Attach the smooth affine curve \tilde{L} to isolated points in $\pi^{-1}(p_i)^{\tilde{\theta}}$.

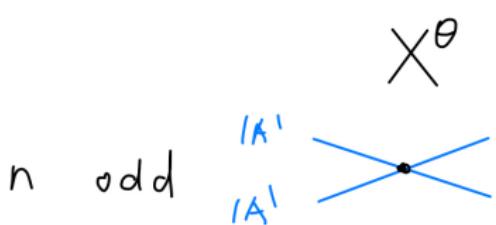
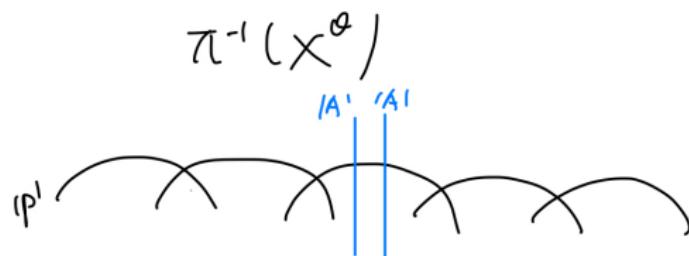
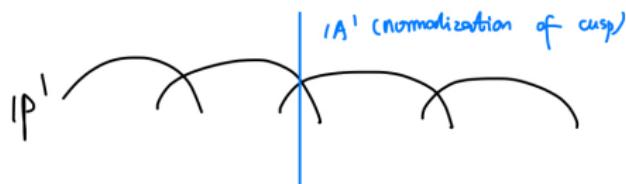
Examples

Deformations of Type A_n Kleinian singularities, with $\theta: x \leftrightarrow y$.

$\mathcal{X}_\lambda = \text{Spec } \mathbb{C}[x, y, z]/(xy - \prod_{i=0}^n (z - \lambda_i))$, $\sum_i \lambda_i = 0$.

1. $\lambda = 0$

$X = \text{Spec } \mathbb{C}[x, y, z]/(xy - z^{n+1})$. type A_n . $\theta: x \leftrightarrow y$



Examples

$$2. X_\lambda = \text{Spec}(\mathbb{C}[x, y, z]/(xy - (z-1)^2(z+1))) \quad \theta: x \mapsto y$$

$$X_\lambda^\theta = (x^2 - (z-1)^2(z+1))$$

$$\pi^{-1}(X_\lambda^\theta)$$

nodal cubic

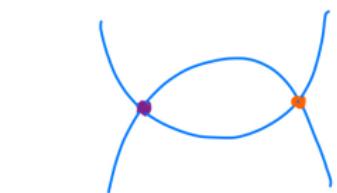


Examples

$$3. \ \chi_\lambda = \text{Spec } \mathbb{C}[x, y, z] / (xy - (z-1)^2(z+1)^2) \quad \theta: x \hookrightarrow y$$

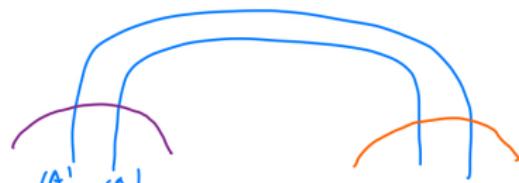
$$\chi_\lambda^\theta = (x^2 - (z-1)^2(z+1)^2)$$

IA^1 , $x = (z+1)^2$ parabola



IA^1 , $x = (z-1)^2$, parabola

$$\pi_\lambda^{-1}(\chi_\lambda^\theta)$$



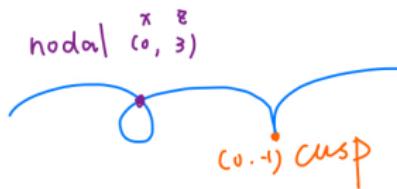
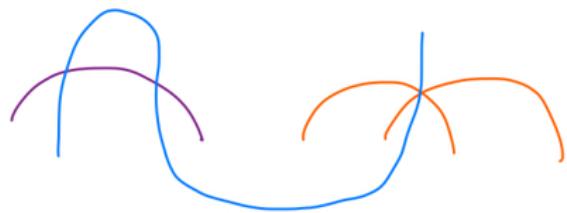
exceptional fiber
at $(0,0,1)$

exceptional fiber
at $(0,0,-1)$

Examples

$$4. \quad X_\lambda = \text{Spec}(\mathbb{C}[t \times y, z] / (xy - (z-3)^2(z+1)^3(z+3))) \quad , \quad \phi: x \hookrightarrow y$$

$$X_\lambda^\theta = \left(x^2 - (z-3)^2(z+1)^3(z+3) \right) \quad \mathbb{C}^{-1}(X_\lambda^\theta)$$



normalization of X_λ^θ : \mathbb{C}^* (hyperbola)

$$\mathbb{C}[t, z] / (t^2 - (z+1)(z+3)) \xrightarrow{\text{birationally}} \mathbb{C}[x, z] / (x^2 - (z-3)^2(z+1)^3(z+3))$$

$$(t, z) \xrightarrow{\quad} (x = t(z-3)(z+1), z)$$

$$(t = \frac{x}{(z-3)(z+1)}, z) \xleftarrow{\quad} (x, z)$$

Thank you!