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Overview: Kleinian singularity X
↶

θ, anti-Poisson involution

Y X

h h/W

π

universal
deformation

universal
resolution

λ̃ ∈ ∋ λ

Yλ̃ ⊂ ⊃ Xλπ−1(X θ
λ ) ⊂ ⊃ X θ

λ

X satisfies X0 = X , grC[Xλ] = C[X ], and universal property.
The restriction π|Yλ̃

: Yλ̃ → Xλ is a resolution of singularity.

Assume compatibility of λ and θ.

Goal: Describe X θ
λ and π−1(X θ

λ ) as schemes.

Motivation: Classify Harish-Chandra modules over quantizations of
nilpotent orbits. Supp(HC modules) ≈ X θ. Filtered quantizations and
Poisson deformations are both parameterized by h/W . Use geometric
info from Poisson deformation to study filtered quantizations.
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An Example

Type A1 Kleinian singularity: X = SpecC[x , y , z ]/(xy − z2)
Anti-Poisson involution θ : x ↔ y

T ∗P1 π−−→ X

X θ is union of two A1’s; π−1(X θ) is the union of two A1 and a P1.

Poisson deformation, Xλ = SpecC[x , y , z ]/(xy − z2 − λ)
↶

θ
X θ

λ = SpecC[x , y , z ]/(x2 − z2 − λ) ≃ C∗ if λ ̸= 0.
Note that Xλ is smooth, so πλ is iso, we get π−1(X θ

λ ) ≃ X θ
λ ≃ C∗.
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Kleinian singularities

Let Γ ⊂ SL2(C) be a finite subgroup. The algebra of invariant func-
tions C[u, v ]Γ is finitely generated.

Kleinian singularities are the quotients X := C2/Γ = SpecC[u, v ]Γ.

Example

When Γ = {±I2}, we have C[u, v ]Γ = even degree polynomials =
C[x = u2, y = v 2, z = uv ] = C[x , y , z ]/(xy − z2).

Fact (Klein, 1884)

C2/Γ ↪→ C3 (one relation), and C2/Γ has an isolated singularity at 0.
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Kleinian singularities

Classification of finite subgroups Γ ⊂ SL2(C)
Deformations of Kleinian singularities

(An) cyclic group of order (n + 1) ⇝ xy − zn+1 = 0
xy − zn+1 −

∑n−1
i=0 λiz

i = 0

(Dn) binary dihedral group of order 4(n − 2) ⇝ xn−1 + xy 2 + z2 = 0
xn−1 +

∑n−2
i=0 λix

i + λny + xy 2 + z2 = 0

(E6) binary tetrahedral group of order 24 ⇝ x4 + y 3 + z2 = 0.
x4 + y 3 + z2+ lower order terms...

(E7) binary octahedral group of order 48 ⇝ x3y + y 3 + z2 = 0
x3y + y 3 + z2+ lower order terms...

(E8) binary icosahedral group of order 120 ⇝ x3y + y 3 + z2 = 0
x5 + y 3 + z2+ lower order terms...

McKay correspondence: Finite subgroups of SL2(C) are in bijection
with ADE Dynkin diagrams.
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Minimal resolutions

McKay correspondence: Kleinian singularities are in bijection with
ADE Dynkin diagrams.

π : Y → X , minimal resolution.
π−1(0) = union of P1’s, according dually to ADE Dynkin diagram.

Examples:

T ∗P1 π−→ A1 singularity
xy − z2 = 0

π−→ D4 singularity
x3 + xy 2 + z2 = 0
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Deformations of Kleinian singularities

What are the singularities of Xλ, λ ∈ h/W ?
What is the exceptional fiber of π : Yλ̃ → Xλ, λ̃ ∈ h?

Proposition (Slodowy)

Let p ∈ Xλ be a singular point. Let ∆(λ̃) = ∆1 ∪ · · · ∪∆m be the
decomposition of the Dynkin diagram of the reductive group ZG (λ̃)
into connected components. Then the completion of Xλ at p is a
Kleinian singularity of type ∆i for a suitable i ∈ {1, · · · ,m}. The
exceptional fiber π−1(p) is a union of P1’s according dually to ∆i .

Example: The surface (xy − (z − 1)2(z +2) = 0) is a deformation of
type A2 singularity (xy − z3 = 0).
The completion of (xy − (z − 1)2(z + 2) = 0) at its unique singular
point p = (0, 0, 1) is a type A1 Kleinian singularity.
Key observation: z + 2 is invertible around p = (0, 0, 1). We can take
its square root, thus get x√

z+2
y√
z+2

− (z − 1)2 = 0.
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Poisson structures

Set X = C2/Γ. The algebra of functions C[X ] = C[u, v ]Γ is a graded
(by degree of polynomials in u, v) Poisson algebra with Poisson bracket

{f1, f2} =
∂f1
∂u

∂f2
∂v

− ∂f1
∂v

∂f2
∂u

.

Example: Type An Kleinian singularity C[x , y , z ]/(xy − zn+1). The
Poisson brackets (up to rescaling) are given by

{x , y} = (n + 1)zn, {x , z} = x , {y , z} = −y .

On the deformation C[x , y , z ]/(xy − P(z)), the Poisson brackets are
given by

{x , y} = P ′(z), {x , z} = x , {y , z} = −y .
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Anti-Poisson involutions

Definition. An anti-Poisson involution of a Kleinian singularity X =
C2/Γ is a graded algebra involution θ : C[X ] → C[X ] such that

θ({f1, f2}) = −{θ(f1), θ(f2)}, ∀ f1, f2 ∈ C[X ].

Proposition (H., 2025)

There are finitely many θ on C2/Γ up to conjugation. They can all
be written out explicitly.

Definition. We say that θ acts on Xλ if there exists a filtered involu-
tion θλ : C[Xλ] → C[Xλ] s.t. gr θλ = θ. We may simply write θλ by θ
if no confusion is caused.

Proposition (H. in progress)

Fix X and θ. Then θ acts on the deformation space h/W . Moreover,
θ acts on Xλ if and only if λ ∈ (h/W )θ.
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Fixed Point Locus

Example. Consider type An Kleinian singularity xy − zn+1 = 0.
(1) The anti-Poisson involution θ : x ↔ y acts on any deformation
xy − (z − λ0)(z − λ1) · · · (z − λn) = 0.
(2) The anti-Poisson involution θ : z 7→ −z acts on the deformation
xy − (z − λ0)(z − λ1) · · · (z − λn) = 0 if and only if λi = −λn−i .

Definition. Assume θ acts on Xλ. The fixed point locus is X θ
λ :=

SpecC[Xλ]/I , where I = (θ(f )− f , f ∈ C[Xλ]).

Example: Type An singularity X = SpecC[x , y , z ]/(xy − zn+1) with
θ : x ↔ y . The fixed-point locus
X θ = SpecC[x , y , z ]/(xy − zn+1, x − y) ≃ SpecC[x , z ]/(x2 − zn+1),
which is a union of two A1’s when n is odd, a cusp when n is even.

X θ
λ can be computed similarly, but description is more complicated. In

general, irreducible component is non-smooth affine curves.
E.g. The fixed point locus of xy− (z−1)2(z+2) = 0 under θ : x ↔ y
is x2 − (z − 1)2(z + 2) = 0, a nodal cubic.
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Lift anti-Poisson involutions

Fix θ. Recall π : Yλ̃ → Xλ minimal resolution. Want to study π−1(X θ
λ ).

Theorem (H., 2025 – All types ADE)

For X0 = X and π : Y → X, there exists a unique anti-symplectic
involution θ̃ : Y → Y such that. π ◦ θ̃ = θ ◦ π.

Idea of Proof: quiver varieties and involutions.

Conjecture (Theorem in type A – H., in progress)

Fix λ ∈ h/W . For suitable choice of λ̃ ∈ h, there exists a unique
anti-symplectic involution θ̃ : Yλ̃ → Yλ̃ such that π ◦ θ̃ = θ ◦ π.

Main difficulty: There are multiple choice of λ̃. Though θ fixes λ,
it may permute different λ̃′s. (In the Theorem, λ = 0 ⇒ λ̃ = 0)
Currently working towards type D.
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Preimages

Why the lift is useful?

Fact: Yλ̃ ⇒ Y θ̃
λ̃
smooth ⇒ No intersection, no cusp/nodal.

We have π−1(X θ
λ ) = Y θ̃

λ̃

⋃
∪iπ

−1(pi), where pi ’s are the singular points

of X θ
λ (The singular points of Xλ that are fixed by θ).

L ⊂ X θ
λ be an irreducible component. Then its normalization L̃ ⊂ Y θ̃

λ̃
.

Irreducible components of π−1(X θ
λ ) are projective lines and smooth

affine curves.

How to determine the preimage π−1(X θ
λ )?

• Draw the exceptional fibers π−1(pi): union of P1’s.
• Analyze the action of θ̃ on each π−1(pi).

• Attach the smooth affine curve L̃ to isolated points in π−1(pi)
θ̃.
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Examples

Deformations of Type An Kleinian singularities, with θ : x ↔ y .
Xλ = SpecC[x , y , z ]/(xy −

∏n
i=0(z − λi)),

∑
i λi = 0.
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Examples
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Examples
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Thank you!
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